
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Enterprise JavaBeans Components
and CORBA Clients: A Developer

Guide

Abstract
This paper discusses how to enable a client written in any language supported by
CORBA to access Enterprise JavaBeans™ components (“EJB™ components”). This
paper is directed at programmers with advanced knowledge of both the Java™ 2
Platform, Enterprise Edition (J2EE™) and CORBA (Common Object Request Broker
Architecture).

 January 2002

2 Enterprise JavaBeans Components and and CORBA Clients: A Developer Guide February, 2002

1

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo
Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to
technology embodied in this product. In particular, and without
limitation, these intellectual property rights may include one or more
of the U.S. patents listed at http://www.sun.com/patents and one or more
additional patents or pending patent applications in the U.S. and other
countries.

This product is distributed under licenses restricting its use, copying
distribution, and decompilation. No part of this product may be
reproduced in any form by any means without prior written authorization
of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and
licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, Enterprise JavaBeans,
EJB, J2EE and J2SE are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries,
exclusively licensed through X/Open Company, Ltd.

2

3

Enterprise JavaBeans™
Components and CORBA Clients: A
Developer Guide

This paper discusses how to enable a client written in any language supported by
CORBA to access Enterprise JavaBeans™ components (“EJB™ components”). This
paper is directed at programmers with advanced knowledge of both the Java™ 2
Platform, Enterprise Edition (J2EE™) and CORBA (Common Object Request Broker
Architecture).

J2EE technology simplifies enterprise applications by basing them on standardized,
modular and re-usable components based on the Enterprise JavaBeans™ (EJB™)
architecture, providing a complete set of services to those components, and handling
many details of application behavior automatically. By automating many of the time-
consuming and difficult tasks of application development, J2EE technology allows
enterprise developers to focus on adding value, that is, enhancing business logic,
rather than building infrastructure.

The EJB™ server-side component model simplifies development of middleware
components that are transactional, scalable, and portable. Enterprise JavaBeans
servers reduce the complexity of developing middleware by providing automatic
support for middleware services such as transactions, security, database
connectivity, and more.

CORBA is an Object Management Group (OMG) standard that is an open, vendor-
independent architecture and infrastructure that computer applications use to work
together over networks. Using the standard Internet Inter-ORB Protocol (IIOP), a
CORBA-based program from any vendor, on almost any computer, operating
system, programming language, and network, can interoperate with a CORBA-
based program from the same or another vendor, on almost any other computer,
operating system, programming language, and network. To learn more about
CORBA, visit http://www.omg.org/gettingstarted/gettingstartedindex.htm.

4 Enterprise JavaBeans Components and CORBA Clients, February, 2002

CORBA technology complements the Java platform by providing a distributed
objects framework, services to support that framework, and interoperability with
other languages. CORBA technology is an integral part of the Java 2 platform, being
used in Enterprise JavaBeans components, Java Remote Method Invocation APIs
running over Internet Inter-ORB Protocol (“Java RMI-IIOP”), and Java IDL APIs
(“Java IDL”).

OMG Interface Definition Language (IDL) is used to describe the interfaces being
implemented by the remote objects. IDL is used to define the name of the interface
and the names of each of the attributes and methods. Once you create the IDL file,
you can use an IDL compiler to generate the client stub and the server skeleton in
any language for which the OMG has defined a specification for such language
mapping. To learn more about OMG IDL, visit http://www.omg.org/
gettingstarted/omg_idl.htm.

Java IDL makes it possible for distributed Java applications to transparently invoke
operations on remote network services using the industry standard OMG IDL and
IIOP defined by the Object Management Group (http://www.omg.org). Java RMI
over IIOP APIs enable the programming of CORBA servers and applications via the
javax.rmi API.

Developers who program EJB components follow the Java RMI programming model
for their distributed object model, where the required transport common across all
application servers is Java RMI-IIOP. In heterogeneous server environments, the
standard mapping of the EJB architecture to CORBA enables the following
interoperability:

■ A client using an ORB from one vendor can access enterprise beans residing on a
server enabled with Enterprise JavaBeans technology (“EJB server”) provided by
another vendor.

■ Enterprise beans in one EJB server can access enterprise beans in another EJB
server.

■ A CORBA client written in a language other than the Java programming language
can access any EJB component as long as there is a mapping from OMG IDL to
that programming language.

The rest of this document provides an example of a CORBA client application
accessing an enterprise bean object. In this document, a CORBA client means a client
application written in any language supported by CORBA, including the Java
programming language, C++, C, Smalltalk, COBOL, Ada, Lisp, or Python. While the
Java code in this example is specific to enterprise beans, the process for developing a
CORBA client that accesses a server created using the Java RMI-IIOP APIs is the
same.

Links to similar example applications from other vendors who implement J2EE
technology can be found in “Links to similar examples” on page 20.

Enterprise JavaBeans™ Components and CORBA Clients: A Developer Guide 5

Developing a CORBA Client that
Accesses an Enterprise Bean
This is an example of how to develop a CORBA client application that accesses an
EJB component. In this example, the client is written in the C++ programming
language, but the client could be written in any language supported by CORBA.

The general process for developing a CORBA client so that it can access an
enterprise bean is demonstrated in the following sections:

1. “Write the Enterprise Bean”, on page 5.

2. “Generate the CORBA IDL”, on page 9.

3. “Create a CORBA client”, on page 10.

4. “Deploy the Enterprise Bean”, on page 14.

5. “Run the client executable”, on page 15.

This document also includes:

■ “Creating a Java RMI-IIOP client application”, on page 16.
■ “Where to go from here”, on page 19.
■ “Tips for complex interfaces”, on page 19.
■ “Links to similar examples”, on page 20.

In order to make the example simple, we have taken a few shortcuts. For
information on building more advanced solutions, see “Tips for complex interfaces”
on page 19.

▼ Write the Enterprise Bean
The following examples show the code for an enterprise bean that will accept simple
String log messages sent to the application server from Java RMI-IIOP and CORBA
clients. The enterprise bean prints them on the server along with the current server
time.

1. Create the following files: Logger.java, LoggerHome.java, LoggerEJB.java,
and LogMessage.java in the /Java/src/ejbinterop directory.

6 Enterprise JavaBeans Components and CORBA Clients, February, 2002

Logger.java

The file Logger.java is the enterprise bean’s remote interface, and as such, it
extends EJBObject. A remote interface provides the remote client view of an EJB
object and defines the business methods callable by a remote client.

CODE EXAMPLE 1 Logger.java

package ejbinterop;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

/**
 * Accepts simple String log messages and prints
 * them on the server.
 */
public interface Logger extends EJBObject
{
 /**
 * Logs the given message on the server with
 * the current server time.
 */
 void logString(String message) throws RemoteException;
}

LoggerHome.java

The file LoggerHome.java extends EJBHome. The EJBHome interface must be
extended by all EJB component’s remote home interfaces. A home interface defines
the methods that allow a remote client to create, find, and remove EJB objects, as
well as home business methods that are not specific to an EJB instance.

CODE EXAMPLE 2 LoggerHome.java

package ejbinterop;

import java.rmi.RemoteException;
import javax.ejb.EJBHome;
import javax.ejb.CreateException;

public interface LoggerHome extends EJBHome
{
 Logger create() throws RemoteException, CreateException;
}

Enterprise JavaBeans™ Components and CORBA Clients: A Developer Guide 7

LoggerEJB.java

The file LoggerEJB.java contains the code for a session bean. A session bean is an
enterprise bean that is created by a client and that usually exists only for the
duration of a single client-server session. A session bean performs operations such
as calculations or accessing a database for the client. In this example, the enterprise
bean accepts simple String log messages from the client and prints them on the
server.

CODE EXAMPLE 3 LoggerEJB.java

package ejbinterop;

import javax.ejb.*;
import java.util.*;
import java.rmi.*;
import java.io.*;

/**
 * Accepts simple String log messages and prints
 * them on the server.
 */
public class LoggerEJB implements SessionBean {

 public LoggerEJB() {}
 public void ejbCreate() {}
 public void ejbRemove() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void setSessionContext(SessionContext sc) {}

 /**
 * Logs the given message on the server with
 * the current server time.
 */
 public void logString(String message) {
 LogMessage msg = new LogMessage(message);

 System.out.println(msg);
 }
}

LogMessage.java

The file LogMessage.java takes the current date and time, creates a formatted
String showing the message, and prints the message to the server.

8 Enterprise JavaBeans Components and CORBA Clients, February, 2002

CODE EXAMPLE 4 LogMessage.java

package ejbinterop;

import java.io.Serializable;
import java.util.Date;
import java.text.*;

/**
 * Simple message class that handles pretty
 * printing of log messages.
 */
public class LogMessage implements Serializable
{
 private String message;
 private long datetime;

 /**
 * Constructor taking the message. This will
 * take the current date and time.
 */
 public LogMessage(String msg) {
 message = msg;
 datetime = (new Date()).getTime();
 }

 /**
 * Creates a formatted String showing the message.
 */
 public String toString() {
 StringBuffer sbuf = new StringBuffer();
 DateFormat dformat
 = DateFormat.getDateTimeInstance(DateFormat.MEDIUM,

DateFormat.LONG);
FieldPosition fpos = new

FieldPosition(DateFormat.DATE_FIELD);
 dformat.format(new Date(datetime), sbuf, fpos);
 sbuf.append(": ");
 sbuf.append(message);
 return sbuf.toString();
 }
}

2. To compile the files written in this section:

javac -classpath $J2EE_HOME/lib/j2ee.jar:<ejbinterop_directory>
*.java

Enterprise JavaBeans™ Components and CORBA Clients: A Developer Guide 9

These commands create class files for all of the .java files in the current directory.
This command and others in this paper assume that the J2EE_HOME environment
variable has been set correctly. Using $J2EE_HOME is a convention of the Unix®
operating environment. Substitute %J2EE_HOME% when working in the Microsoft
Windows operating environment.

▼ Generate the CORBA IDL
This sections discusses generating the Interface Definition Language (IDL) files from
the Java class files generated in the previous section. In this example, we will use the
rmic compiler to map the Java code to IDL. IDL provides a purely declarative,
programming language-independent way of specifying an object’s API.

3. Run the rmic compiler against the Java class files generated in the previous step
as follows:

rmic -idl -noValueMethods -classpath
$J2EE_HOME/lib/j2ee.jar:<path_to_ejbinterop_dir>
-d <path_to_where_idl_files_should_be_generated>
ejbinterop.Logger ejbinterop.LoggerHome

In the preceding example, we are including the .jar file containing definitions for the
javax.ejb package as well as the directory to our ejbinterop files. If you’re
using the Java™ 2 Platform, Enterprise Edition (J2EE™), version 1.3 Reference
Implementation (RI), the .jar files are located in $J2EE_HOME/lib/j2ee.jar.

In the command line for rmic above, we recommend a shortcut — using the
noValueMethods option. This option tells rmic to skip any methods with
parameter or return types that would be mapped to CORBA value types. The
advantage is that it will prevent us from generating a lot of unnecessary IDL that we
might have to implement in the C++ client. The disadvantage is that we can only use
primitive data types, arrays, and Strings as parameters or return values, and not
our own Java class types. Read more about this in “Tips for complex interfaces”, on
page 19.

Running the rmic compiler on the Java class files generates the following files to the
directory indicated with the -d option in the rmic statement above:

■ java/lang/Ex.idl
■ java/lang/Exception.idl
■ java/lang/Object.idl
■ java/lang/Throwable.idl
■ java/lang/ThrowableEx.idl
■ javax/ejb/CreateEx.idl
■ javax/ejb/CreateException.idl
■ javax/ejb/EJBHome.idl
■ javax/ejb/EJBMetaData.idl

10 Enterprise JavaBeans Components and CORBA Clients, February, 2002

■ javax/ejb/EJBObject.idl
■ javax/ejb/Handle.idl
■ javax/ejb/HomeHandle.idl
■ javax/ejb/RemoveEx.idl
■ javax/ejb/RemoveException.idl
■ ejbinterop/Logger.idl
■ ejbinterop/LoggerHome.idl

Note – A number of these generated files contain API that can only be used within
a Java programming environment. For example, the EJBMetaData implementation
is currently specific to each application server, and thus it will be difficult to develop
equivalents that will continue to work over time on platforms other than the Java
platform. One option is to remove these from the IDL, but if you do, you’ll have to
remove them from the IDL every time you change the Java interface and regenerate
the IDL files from the rmic compiler.

Note – Since CORBA exceptions don’t support inheritance, the Java language to
IDL mapping creates an Ex class that contains a CORBA value type representing the
actual Java exception. In this basic example, we’re not going to worry much about
exception support. More information about exceptions can be found at http://
java.sun.com/j2se/1.4/docs/guide/idl/jidlExceptions.html.

4. Compile the IDL files with your C++ vendor’s “IDL to C++” compiler to generate
the C++ code corresponding to the IDL. The steps for this procedure vary by
vendor, so consult your product documentation for the specific steps for your
vendor.

▼ Create a CORBA client
The client application can be written in any language supported by CORBA. The
following example provides the code for a simple C++ client that, given an Object
Request Broker (ORB) and a corbaname URL for a LoggerHome object, logs a
simple String message on the server. You’ll have to adjust the include statements
and modify the code for registering the value factories based on your C++ ORB
vendor’s libraries. This example was written for ORBacus for C++ 4.0.5 and some of
the C++ code in this example is specific to that product.

A corbaname URL is a human-readable URL format that enables you to access
CORBA objects. It is used to resolve a stringified name from a specific naming
context. This is a new feature in the J2EE v 1.3 platform as part of the CORBA
Interoperable Naming Service (INS). INS is an extension to CORBA Object Services

http://java.sun.com/j2se/1.4/docs/guide/idl/jidlExceptions.html
http://java.sun.com/j2se/1.4/docs/guide/idl/jidlExceptions.html

Enterprise JavaBeans™ Components and CORBA Clients: A Developer Guide 11

(COS) Naming Service, which was delivered in previous releases of the J2EE
platform. To read more about INS, visit http://java.sun.com/j2se/1.4/docs/guide/
idl/jidlNaming.html#INS.

In this example, the client code does the following:

1. Creates an Object Request Broker (ORB). The ORB connects objects requesting
services to the objects providing them.

2. Registers value factories.

3. Looks up the LoggerHome object in the naming context pointed to by the
corbaname URL.

4. Performs a safe downcast from the object returned to a LoggerHome object.

5. Creates a LoggerEJB object reference.

6. Logs our message.

7. Tells the application server we won’t use this EJB reference again.

5. Create the client using C++ code similar to the following. The exact code may vary
with your C++ implementation. This code was written for ORBacus for C++ 4.0.5
and some of the C++ code in this example may be specific to that product.

CODE EXAMPLE 5 Client.cpp

#include <fstream.h>

// C++ ORB Vendor specific include files
// These are from C++ ORBacus 4.0.5

#include <OB/CORBA.h>
#include <OB/OBORB.h>

// Include files generated from our IDL
#include <java/lang/Exception.h>
#include <java/lang/Throwable.h>
#include <javax/ejb/CreateException.h>
#include <javax/ejb/RemoveException.h>
#include <ejbinterop/Logger.h>
#include <ejbinterop/LoggerHome.h>

/**
 * Given an ORB and a corbaname URL for a LoggerHome
 * object, logs a simple string message on the server.
 */
void
run(CORBA::ORB_ptr orb, const char* logger_home_url)
{

cout << "Looking for: " << logger_home_url << endl;

12 Enterprise JavaBeans Components and CORBA Clients, February, 2002

// Look up the LoggerHome object in the naming context
// pointed to by the corbaname URL
CORBA::Object_var home_obj

 = orb->string_to_object(logger_home_url);

// Perform a safe downcast
ejbinterop::LoggerHome_var home

 = ejbinterop::LoggerHome::_narrow(home_obj.in());

assert(!CORBA::is_nil(home));

// Create a Logger EJB reference
ejbinterop::Logger_var logger = home->create();

CORBA::WStringValue_var msg =
new CORBA::WStringValue((const CORBA::WChar*)L"Message

from a C++ client");

cout << "Logging..." << endl;

// Log our message
logger->logString(msg);

// Tell the application server we won’t use this
// EJB reference any more
logger->remove();

cout << "Done" << endl;
}

/**
 * Simple main method that checks arguments, creates an
 * ORB, and handles exceptions.
 */
int
main(int argc, char* argv[])
{

int exit_code = 0;
CORBA::ORB_var orb;

try {

// Check the arguments
if (argc != 2) {

cerr << "Usage: Client <corbaname URL of LoggerHome>" << endl;
return 1;

}

Enterprise JavaBeans™ Components and CORBA Clients: A Developer Guide 13

// Create an ORB
orb = CORBA::ORB_init(argc, argv);

// Register value factories

// NOTE: This is overkill for the example since we’ll never
// get these exceptions. Also, the _OB_id method is a
// proprietary feature of ORBacus C++ generated code.
CORBA::ValueFactory factory = new java::lang::Throwable_init;
orb -> register_value_factory(java::lang::Throwable::_OB_id(),

factory);
factory -> _remove_ref();

factory = new java::lang::Exception_init;
orb -> register_value_factory(java::lang::Exception::_OB_id(),

factory);
factory -> _remove_ref();

factory = new javax::ejb::CreateException_init;
orb ->

register_value_factory(javax::ejb::CreateException::_OB_id(),
factory);

factory -> _remove_ref();

factory = new javax::ejb::RemoveException_init;
orb ->

register_value_factory(javax::ejb::RemoveException::_OB_id(),
factory);

factory -> _remove_ref();

// Perform the work
run(orb, argv[1]);

} catch(const CORBA::Exception& ex) {
// Handle any CORBA related exceptions
cerr << ex._to_string() << endl;
exit_code = 1;

}

// Release any ORB resources
if (!CORBA::is_nil(orb)) {

try {
orb -> destroy();

} catch(const CORBA::Exception& ex) {
 cerr << ex._to_string() << endl;
 exit_code = 1;
 }

}

14 Enterprise JavaBeans Components and CORBA Clients, February, 2002

return exit_code;
}

6. Use your C++ compiler to compile all of the C++ files, including the Client.cpp
file, to create a Client executable. Such tools vary widely across platforms, so
consult your product documentation for instructions.

▼ Deploy the Enterprise Bean
7. The next step is to deploy the enterprise bean using your favorite application

server. The following steps describe how to deploy the LoggerEJB component
using the J2EE 1.3 Reference Implementation (RI).

1. Start the RI application from a terminal window or command prompt by typing:

$J2EE_HOME/bin/j2ee -verbose

2. When the J2EE 1.3 RI indicates “J2EE server startup complete”, run the
deployment tool from another terminal window or command prompt by typing:

$J2EE_HOME/bin/deploytool

3. From the deployment tool, select File -> New -> Application.

4. In the Application File Name field, enter Logger.ear to indicate in which file to
create the application.

5. In the Application Display Name field, enter Logger

6. Select OK to save the settings and close this dialog window.

7. From the deployment tool, select File -> New -> Enterprise Bean.

8. Select Next if you get the Introduction screen. If not, continue.

9. In the New EnterpriseBean Wizard, select Edit in the Contents box.

10. Expand the Available Files list, and add the following four .class files from our
ejbinterop package: Logger.class, LoggerHome.class,
LoggerEJB.class, LogMessage.class. Select OK, then Next.

11. Select Stateless Session Bean Type.

12. Select ejbinterop.LoggerEJB for the Enterprise Bean Class.

13. Select ejbinterop.LoggerHome for the Remote Home Interface.

14. Select ejbinterop.Logger for the Remote Interface.

15. Select the Next button until you get to the Security Settings page.

Enterprise JavaBeans™ Components and CORBA Clients: A Developer Guide 15

16. Select the Deployment Settings button.

17. Select Support Client Choice.

18. Select OK to save the settings and close this dialog window.

19. Select Finish.

20. From the deployment tool, select, Tools -> Deploy.

21. If running the Java RMI-IIOP client only, select Return Client JAR.

22. Select Next.

23. Enter ejbinterop/logger in the JNDI Name for our LoggerEJB field.

24. Select Finish.

25. Select File -> Exit to exit the deploytool.

Now, the Logger application with our LoggerEJB components are deployed and
ready to receive messages.

▼ Run the client executable
8. Run the client executable. One way you can run the client executable is to enter

the following URL in a terminal window from the directory containing the
executable client file:

Client corbaname:iiop:1.2@localhost:1050#ejbinterop/logger

In this URL,

■ Client is the name of the application to run.

■ corbaname specifies that we will resolve a stringified name from a specific
naming context.

■ iiop:1.2 tells the ORB to use the IIOP protocol and GIOP 1.2.

■ The host machine on which to find the reference is localhost, the local machine.
To expand this example to run on two machines, enter the IP address or host
name of the machine on which the server is running instead of localhost.

■ 1050 is the port on which the naming service is listening for requests. By default
in the J2EE v.1.3 RI, the default port the naming service listens on is port 1050.
The portion of the reference up to this point at the hash mark (Client
corbaname:iiop:1.2@localhost:1050) is the URL that returns the root
naming context.

■ ejbinterop/logger is the name to resolve in the naming context.

16 Enterprise JavaBeans Components and CORBA Clients, February, 2002

If you are using the J2EE 1.3 Reference Implementation, you should see a message
similar to the following printed on the application server:

Sep 21, 2001 3:33:07 PM PDT: Message from a C++ client ejbinterop/
logger is the name to be resolved from the Naming Service.

▼ Stop the J2EE Server
9. Stop the J2EE server. To stop the server, enter this command in a terminal window

or command prompt.

$J2EE_HOME/bin/j2ee -stop

Procedures for stopping running processes vary among operating systems, so if you
are running a different server, consult your system documentation for details.

Creating a Java RMI-IIOP client
application
Using the same example, we can easily develop a Java RMI-IIOP client that connects
to an enterprise bean. The differences from the example using a C++ client are:

■ In your client CLASSPATH, you must include the location of the client .jar file
created by the J2EE application server running the desired enterprise bean. That
.jar file contains the necessary client stubs.

■ When deploying the application using the J2EE 1.3 RI, check the box Return
Client Jar in the Deploytool on the first page of the Deploy screen.

The following code is the Java RMI-IIOP version of a client for our LoggerEJB
component. Follow the same steps as those presented for the C++ client example.
When running the client, use the same URL as in the C++ example.

CODE EXAMPLE 6 LogClient.java

package ejbinterop;
import java.rmi.RemoteException;
import javax.rmi.*;
import java.io.*;
import javax.naming.*;
import javax.ejb.*;

/**
 * Simple Java RMI-IIOP client that uses an EJB component.
 */
public class LogClient

Enterprise JavaBeans™ Components and CORBA Clients: A Developer Guide 17

{
 /**
 * Given a corbaname URL for a LoggerHome,
 * log a simple String message on the server.
 */
 public static void run(String loggerHomeURL)
 throws CreateException, RemoveException,
 RemoteException, NamingException
 {
 System.out.println("Looking for: " + loggerHomeURL);

 // Create an InitialContext. This will use the
 // CosNaming provider we will specify at runtime.
 InitialContext ic = new InitialContext();

 // Lookup the LoggerHome in the naming context
 // pointed to by the corbaname URL
 Object homeObj = ic.lookup(loggerHomeURL);

 // Perform a safe downcast
 LoggerHome home
 = (LoggerHome)PortableRemoteObject.narrow(homeObj,

LoggerHome.class);

 // Create a Logger EJB reference
 Logger logger = home.create();

 System.out.println("Logging...");

 // Log our message
 logger.logString("Message from a Java RMI-IIOP client");

 // Tell the application server we won’t use this
 // EJB reference anymore
 logger.remove();

 System.out.println("Done");
 }

 /**
 * Simple main method to check arguments and handle
 * exceptions.
 */
 public static void main(String args[])
 {
 try {

 if (args.length != 1) {
System.out.println("Args: corbaname URL of LoggerHome");

18 Enterprise JavaBeans Components and CORBA Clients, February, 2002

 System.exit(1);
 }

 LogClient.run(args[0]);

 } catch (Throwable t) {
 t.printStackTrace();
 System.exit(1);
 }
 }
}

Running the application with the Java RMI-IIOP
client
When running the example application with a Java RMI-IIOP client instead of a C++
client, follow these steps:

1. Compile the .java files in the ejbinterop/ directory with the following
command:

javac -classpath $J2EE_HOME/lib/j2ee.jar:<ejbinterop_directory>
*.java

2. Deploy the Enterprise JavaBean component as described in “Deploy the
Enterprise Bean” on page 14. Remember to select Return Client JAR on the Tools
-> Deploy page when running a Java RMI-IIOP client application. The section on
deploying the RI also starts the J2EE RI.

3. Run the client application using a command similar to the following:

java -classpath $J2EE_HOME/lib/j2ee.jar:
<path to LoggerClient.jar>/LoggerClient.jar:
<directory_above_ejbinterop>:<ejbinterop_directory>
ejbinterop.LogClient
corbaname:iiop:1.2@localhost:1050#ejbinterop/logger

In the window in which the J2EE RI is running, you will see this:

Jan 31, 2002 2:27:47 PM PST: Message from a Java RMI-IIOP client

In the window from where the client is run, you will see this:

Looking for: corbaname:iiop:1.2@localhost:1050#ejbinterop/logger
Logging...
Done

4. Stop the J2EE server.

Enterprise JavaBeans™ Components and CORBA Clients: A Developer Guide 19

Beyond the basic application
This section contains the following information:

■ “Where to go from here” on page 19
■ “Tips for complex interfaces” on page 19
■ “Links to similar examples” on page 20

Where to go from here
To enhance the application you could:

■ Develop the example to use valuetypes.

To do this, remove the -noValueMethods switch when you run rmic. Rerun
your IDL to C++ language mapping compiler to verify that it supports the
valuetypes that have been generated.

■ Add another method to Logger that actually takes a LogMessage.

Tips for complex interfaces
The interfaces are key to the communication between clients and servers speaking
different languages. To increase the probability of success in this area, consider the
following suggestions:

■ Avoid using complex Java classes, such as collections in java.util, for method
parameters or return types.

After these types are mapped to IDL, you will be forced to implement them in
your client programming language. In addition, since Java Object Serialization
and RMI-IIOP APIs allow the wire format and internal representation of classes to
evolve over time, your CORBA client applications may be incompatible across
Java™ 2 Platform, Standard Edition (J2SE™) implementations or versions.

■ Start with IDL.

You may want complex data structures in your return types or method
parameters. In this case, try starting with IDL. Define data structures and even
exceptions in IDL, and then use them in your EJB interfaces. This will prevent
artifacts of the reverse mapping from creeping into your CORBA interfaces.

For instance, try defining the LogMessage class in IDL initially, and then using
the resulting class of a Java language to IDL compilation as a method parameter
in the Logger EJB component.

20 Enterprise JavaBeans Components and CORBA Clients, February, 2002

■ Avoid overloading in EJB interfaces.

CORBA IDL does not support method overloading, and the Java language to IDL
mapping specification handles this by creating IDL method definitions that
combine the method name with all its IDL parameter types. This leads to very
unfriendly method names for developers using languages other than the Java
programming language.

■ Consider using bridges.

If the available options are still too limited or impact the code you wish to write,
consider using a server–side bridge. You can read more about constructing such
bridges from the sites listed in the links section.

Links to similar examples
Several vendors implementing J2EE technology have excellent examples and tips for
integrating CORBA and Enterprise JavaBeans technology:

■ IONA - Calling Enterprise Beans from CORBA Clients at http://www.iona.com/
docs/iportal_application_server/3.0/DevelopGuide/html/intro-
RMI.html#311099

■ BEA - EJB-to-CORBA/Java Simpapp Sample Application at http://edocs.bea.com/
wle/wle50/interop/ejbcorba.htm

■ Borland - Sevens steps to build a VisiBroker C++ CORBA Client for an EJB Server at
http://www.borland.com/devsupport/appserver/faq/ejbcpp/ejb_cpp.html

	Enterprise JavaBeans Components and CORBA Clients: A Developer Guide
	Enterprise JavaBeans™ Components and CORBA Clients: A Developer Guide
	Developing a CORBA Client that Accesses an Enterprise Bean
	Write the Enterprise Bean
	Generate the CORBA IDL
	Create a CORBA client
	Deploy the Enterprise Bean
	Run the client executable
	Stop the J2EE Server

	Creating a Java RMI-IIOP client application
	Running the application with the Java RMI-IIOP client

	Beyond the basic application
	Where to go from here
	Tips for complex interfaces
	Links to similar examples

